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Summa~ 

The effect of the presence of a free surface on the behaviour of shear-modified internal waves is investigated. In 
all cases, the qualitative behaviour with varying Richardson number is similar to that in the case of a rigid upper 
boundary. The quantitative differences are shown to be small and therefore the free surface can be replaced by a 
rigid-lid boundary condition with negligible error. 

1. Introduction 

Internal  gravity waves, the normal  modes of  a stratified fluid, have been studied 
extensively over the years and their importance recognised in such fields as oceanography  
and meteorology. In  many  application, however, there is an Underlying shear flow which 
may  have a substantial  effect on the behaviour of  the wave modes. Al though such shear 
has been considered in problems such as the generation of  lee waves, it was only fairly 
recently that  the effect of  shear on the free oscillations (the normal  modes) was investi- 
gated. 

Banks, Drazin  and Zaturska [1] conducted a systematic investigation of  the class of 
discrete, non-singular  stable modes of  an inviscid, stratified plane-parallel shear flow; 
these are shear-modified internal waves. They examined the asymptot ic  behaviour  of  the 
modes  for bo th  large and small Richardson numbers,  bo th  analytically and numerically. 
Their  most  impor tant  finding was that for small Richardson numbers,  the wave speed 
depended critically on the local behaviour of  the mean  flow near the max imum (or 
minimum) of  the velocity profile. Their results were applicable to flows between two rigid 
horizontal  boundaries  and to unbounded  flows satisfying various constraints on the 
buoyancy  frequency as z ~ oo. 

Here, the effect on the behaviour  of shear-modified internal wave modes of  a free upper  
surface is considered. In  Sec. 2, the Taylor-Goldste in  equat ion governing the mot ion  and 
the appropria te  form of the free-surface condit ion are briefly derived. The following 
sections deal respectively with the analytic asymptot ic  results for large and small Richard-  
son number  and with some numerical results. The former indicate that the presence of  the 
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free surface makes no real qualitative difference to the results of Banks et al. [1]; the 
numerical results show that the quantitative differences between the two cases are also 
small, and give some indication of the error arising from replacing a free surface by a rigid 
lid. 

2. The governing equations 

We consider disturbances in a two-dimensional incompressible stratified fluid, whose 
basic state is one of plane parallel flow, i.e. 

,,* = r , * ( z * ) i ,  p* = p*  =p*(z), 

with 

dp* = - g ~ * ( z * ) .  
dz* 

(* denotes dimensional variables). Furthermore, we make the Boussinesq approximation, 
neglecting density variation with depth in all but the buoyancy terms. Non-dimensionali- 
zation can be carried out with respect to characteristic values of velocity, density and 
length scale; these are chosen to be, respectively, the maximum flow speed of the basic 
flow, the Boussinesq reference density P0 (taken to be the free-surface value) and the 
channel depth L, which gives a scale for the basic shear flow. 

The non-dimensional Boussinesq equation are then 

0u Ow 

3p 
+ u .  V p = 0 ,  

0t 

all 
at 

+ u - v u =  -G(vp+ pk), 

where G = g L / U  2 is an inverse Froude number. As the disturbances are regarded as small 
perturbations to the basic flow, we write 

the primes denoting the perturbation quantities. Substitution of these, followed by 
linearization and the introduction of a stream function ~k (such that u ' =  ~k:, w ' =  -~kx), 
leads to the following equations for ~k and the density perturbation (where we now drop 
the primes): 

p, + ~p~ - ~,~: = o, 

,/q~, + ~ ¢ ~  - ~ ,  + ¢,~x, + ~ ¢ ~  - (~p~ = O. 



If normal modes of the form 

= q~(z) e x p ( i a ( x  - ct )} ,  
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p = tS(z) exp{ ia (x  - ct ) )  

are sought, the above equations can be combined to yield the Taylor-Goldstein equation 

(fi - c ) (0 "  - a20) - u'ep q jN2ep O. (2.1) 

Here, J is an overall Richardson number and 

j N 2 _  G Op_ gL 2 1 DO* (2.2) 
p Oz U 2 O* Oz*" 

In a similar fashion, the bottom boundary condition is found to be 

q~=0 on z = - l ;  (2.3) 

the free-surface condition reduces to 

( f i - c ) 2 d / - f i ' ( f i - c ) d p - G t h = 0  on z = 0 .  (2.4) 

3. Asymptotic behaviour for large and small J 

In their study of the corresponding problem with a rigid upper boundary, Banks et al. [1] 
considered the asymptotic behaviour of the shear-modified internal waves in the limits of 
large and small overall Richardson number. Similar asymptotic techniques can be used 
here. In fact, the results differ only in detail from the findings of Banks et al.; accordingly, 
only a summary of the most important features is given. 

For the sake of simplicity and since the primary interest lies in the effect of the nature 
of the shear flow, the buoyancy frequency will be assumed to be constant with height 
throughout the following analysis. Thus, in the notation of Sec. 2, N z -- 1, without loss of 
generality. 

(a) Large J behaviour 

The limit J ~ o9 corresponds to either infinite buoyancy or zero dimensional scale of the 
basic shear flow; shear effects are therefore expected to be negligible compared to that of 
the stratification. In this limit, the solutions should tend to the normal spectrum of 
internal wave modes. (We will neglect here the additional free-surface modes.) 

That this is the case can be verified by expanding the Taylor-Goldstein equation, and 
the boundary conditions, in powers of j -1 /2 ,  as in Banks et al. [1]. For J large, the 
lowest-order eigenfunctions are 

= sin & ( z  + 1) (3.1) 



290 

with associated eigenvalues (the phase speeds) 

J )1/2, (3.2) 
cn= -+ f12 + ot2 

where the ft, (n = 1, 2 . . . .  ) are solutions of 

/32 + a2 J (3.3) 
/3, tan ft, = ~ .  

The n th root fin lies in the interval (n~r, nor + ~r/2). 
Although we are here concerned with J large, it is the ratio J / G  which is important. 

This is effectively the ratio of the length scale of the basic flow to that of the density 
variations, and in the context in which we are interested (oceanic applications), this will 
usually be small, even for fairly substantial values of J. (This is also in keeping with our 
use of the Boussinesq approximation.) In this case, examination of the transcendental 
equation for fl~ indicates that 

B, = n ~ ' + c , ,  

where c n is small. Therefore, the error in approximating fin by n~r in the wave speed should 
be small also. In other words, the rigid-lid wave speed is a good approximation to the 
wave speed of the internal modes in the presence of a free surface. Some numerical checks 
of this are presented in Sec. 4. 

Higher-order corrections to the wave speed and to the vertical structure ~(z),  due to 
the shear, can be calculated. Any such terms are, however, dependent upon the precise 
structure of the basic flow and there is not much to be gained by considering in detail any 
one such example. It is, however, perhaps worth noting that the presence of the free 
surface makes the problem asymmetric, so that even for a ~(z) symmetric about the 
mid-depth of the channel there will always be an O(1) correction to the wave speed c. 

(b) Small Richardson number 

When examining the normal modes of shear flows between rigid boundaries at low 
Richardson number, Banks et al. found, first from their numerical results and later by 
asymptotic analysis, that the nature, position and strength of the maximum speed of the 
basic flow exerted a controlling influence on the wave speed of the disturbances. Two 
cases emerged, one when the maximum lay in the flow interior, the other when it was 
attained at a boundary. 

In the first case, as the Richardson number J decreased to zero, the wave speed of all 
the normal modes decreased to the maximum speed of the basic flow; for small J, the 
decay of all modes and for all wavelengths, was algebraic. The asymptotic analysis 
revealed that 

2JN2,,, 
c - 1  as J- -*0,  for n = l , 2  . . . . .  (3.4) 

f i~n(n + 2 )  ' 
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where the subscript m denotes the value at the position of the basic flow maximum and n 
is the mode number index. This result is clearly dependent only on the local character of 
the flow in the region of its maximum speed. Intuitively, then, we would expect the 
replacement of a rigid upper boundary by a free surface to have no real effect on this 
limiting form. That this is so can be confirmed by repeating the asymptotic analysis of 
Banks et al. with the new boundary condition. Equation (3.4) is thus the appropriate 
asymptotic form for the free-surface problem also, if the basic flow maximum is in the 
flow interior. The precise nature of the eigenfunctions, in the "outer"  solution, will be 
affected by the boundary conditions, but this is not of great significance. 

For flows where the maximum speed is attained at a boundary (with non-zero shear 
there), Banks et al. again found that fimax was the limiting value of the wave speed for all 
modes. However, the nature of the approach to the limit showed two distinct patterns, and 
the limit was not attained as J ~,0. A finite number of modes tended to the limit in an 
algebraic manner, as J decreased to some value Jn (depending upon the mode). The 
remainder showed exponential decay as J decreased to (~m)2/4N2,, (subscript m denoting 
the values at the basic flow maximum). 

When the maximum is found at  the free surface, we might well expect the different 
boundary condition there to make some difference to the results from the rigid lid case. 
The analysis of Banks et al. can be applied to such a flow, where in our notation, 

~ ( z )  < ~(0)  = ~,.--- 1, - l ~ < z < 0 ,  

and 

= > 0 .  

The free-surface condition does affect the inner solution ffi, which becomes 

'/'/ l-c_, 2~,d(Z + 1  1)1/2((~ - ½+d)(Z+l)'+(v+½- d ) ( Z +  1) -~)  (3.5) 
Um 

where 

1 JN~ ) 
v =  4 ( ~ . ) 2  

1/2 

(3.6) 

and 

G 
d = l +  

R'(1  - c ) '  

this should be compared to Eqn. (65) of Banks et al. However, if the matching procedure 
is carried through, the same two types of behaviour are found as in the rigid-lid problem, 
according to whether v is real or imaginary. 
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For v real, a finite number (possibly zero) of modes decay with 

c-l+Fd(Dl(J-J")V"+---d-½) 1 / 2 ~ " v .  d+½ (3.7) 

as J decreases to some critical value J~. (D 1 is a constant; the subscript n denotes the 
dependence on the mode number.) For v purely imaginary, i.e. for 

JN~ < ~, 

the modes decay exponentially, with 

c -  1 + fi',,, exp(-C'/D') exp(- j~r / /~) ,  j = 1, 2 . . . . .  (3.8) 

where ~t = iv and C', D '  are constants, as/x ~,0. 
The equations (3.7) and (3.8) show (by comparison with Eqns. (67) and (69) of Banks et 

al.) that there is no real qualitative difference in behaviour between the rigid-lid and 
free-surface cases for flows with maximum at the upper surface, although quantitative 
differences do exist. These are explored more fully in the section on numerical results. 

Thus, we can conclude that wherever the basic flow has its maximum speed, the 
substitution of a free surface for a rigid lid will have no real qualitative effect at small 
Richardson number. 

4. Some numerical results 

Although the asymptotic results presented in the previous section indicate that the 
replacement of a free upper surface by a rigid boundary should have little effect on the 
shear-modified internal waves, it is useful to have some numerical results for comparison 
over a large range of values of J,  and not just for the extremes of very large and small J. 
These can also give some quantitative measure of the error in using a rigid-lid approxima- 
tion, for typical parameter values. 

Use was made in the calculations of several routines from the widely-available N A G  
library of numerical routines. These were all essentially similar, being designed to solve 
eigenvalues problems of the Sturm-LiouviUe type, namely of the form 

(p(z)f')'+q(z; x) f=  0, 

where ~ is an eigenvalue and f its associated eigenfunction. The Sturm-Liouville equation 
is transformed by a scaled Prefer transform to the (pf', f )  phase plane. The Pri~fer 
variables B, ~ and p are defined by 

p(z) f '  = B 1/2 exp-~P cos 2 , 

I= B,J2 exp  sin  
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(For a general discussion of Pri~fer transforms, see Birkhoff and Rota [2,Chap. X]; details 
of the scaled Pri~fer transform used in the N A G  routines are given by Pryce [3].) In the 
transformed problem, it is easy to identify and select the n th eigenvalue, by the number of 
zeros of the eigenfunction, and there is a unique correspondence between solutions of the 
Priifer system and the original differential equation. The problem in the phase plane is 
solved using a shooting method, the iterations being carried out until the required degree 
of accuracy is achieved. 

The Taylor-Goldstein equation 

(fi - c ) (~"  - aZq~) -fi"q~ + JNZqJ_ = 0 
U - - C  

can be written in the appropriate S-L form for use with these routines, with p ( z ) =  1 and 

f i "  j N  2 
q ( z ,  c ) =  - a  2 -  - -  ) 

where c is the eigenvalue to be determined for fixed J, N2(2) and oz. For the rigid-lid 
problem, where both top and bottom boundary conditions take the form ¢ = 0, the 
simplest routine (D02KAF) can be used. However, in the free-surface problem, the 
boundary condition at the surface, 

( f i - c ) % ' - f i ' ( ~ - c ) ~ - G , = 0  on z = 0 ,  

clearly involves the unknown eigenvalue c. Use of the more complex routine D02KDF 
allows the latest approximation to the eigenvalue to be substituted into the boundary 
condition at each iteration. 

The density variation in the examples considered was taken to be constant, so that 
N 2 = 1, and J alone was varied; in addition, all the basic flows were confined to the region 
- 1 ~< z ~< 0. Calculations were carried out over a large range of values of J. For the first 
and largest, the initial estimate for the eigenvalue supplied to the routine was based on the 
asymptotic limit value of c as J ~ oO (see Sec. 3). At subsequent values of J,  the initial 
guess for c was based on the final result for the previous calculation or on a linear 
extrapolation of the previous two results. 

The remaining parameters in the problem are a, the wave number, G the inverse 
Froude number and k, the eigenvalue (mode) index. Calculations were carried out at a 
number of values of a for the first three internal-wave modes (k = 1, 2, 3; k = 0 corre- 
sponds to a surface-wave mode). Similarly, a number of values of G were considered. In 
terms of the length and velocity scales L and U, G = g L / U 2 ;  for an oceanic flow, U is 
typically of the order of 10 cm/sec,  and length scales of the order of kilometres, giving 
G -- O ( 1 0 6 ) .  The calculations were therefore performed systematically for G = 10 5, 106 

and 107;  a few isolated calculations were also made with much larger G. 
Two velocity profiles were considered, one with a maximum in the flow interior, the 

other with the maximum at the upper boundary. The first of these was the sinusoidal 
profile 

~ (z )=s in (E~rz+~r ) ,  - l ~ < z ~ < 0 .  

By considering a particular eigenmode, for a fixed wavelength, the effect of varying the 
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Table 1. Wave speeds of the lowest internal-wave mode, with wave number a = 0, for a range of values of G and 
J. The corresponding rigid-lid results are shown for comparison. 

J G 

105 106 107 101° Rind lid 

400 6.3744 6.3761 6.3763 6.3763 6.3662 
300 5.5239 5.5250 5.5251 5.5133 
200 4.5158 4.5163 4.5164 4.5016 
100 3.2053 3.2055 3.2055 3.1831 
40 2.0565 2.0565 2.0565 2.0565 
20 1.5098 1.5098 1.5098 1.5098 

inverse Froude  n u m b e r  G can be evaluated, over a large range of values of J, the 
Richardson number .  Some typical results are shown in Table  1. F rom such results, it is 
clear that G does not  make much difference to the wave speed c; in fact, the error in 
replacing the free-surface condi t ion  by a rigid-lid condi t ion  is of the order of a few percent  
at most. 

Figures 1 and 2 show the wave speed c as a funct ion of Richardson n u m b e r  J, at fixed 
Froude  number ,  for the first three wave modes of given wavelength and for the lowest 

mode  at a n u m b e r  of values of wave n u m b e r  a, respectively. F rom these, and  similar 
results, it is clear that c decreases to 1 (i.e. in d imens ional  terms, c decreases to fimax) as J 
tends to zero. Table  2 gives a comparison,  for small J,  of the numerical ly  computed  values 
and  those obta ined  from the asymptotic  result of Sec. 3, for the first three modes. Again,  
this is a typical set of results and the asymptotic  behaviour  for small J is clearly 
well-modelled by this formula. It  should be noted  that with this choice of ~(z),  dq/dX in 
the Sturm-Liouvil le  problem may not  always be single signed. Some failures of the N A G  

C 

7- 

5 

3. 

j J  
/ 

k = l  

k=2 

k=3 

o too 28o 3;o £o 
J 

Figure 1. The wave speed c for the first three modified internal-wave modes, in the shear flow ~(z ) = sin(2 ~rz + ~r ), 
f o r  a = l  a n d  G = 1 0  3 . 



295  

Table 2. Wave speed c for the first three internal-wave modes, at low Richardson number,  with a = 1, G = 10s; 
(a) asymptotic results; (b) numerical results. 

j k = l  k = 2  k = 3  

(a) (b) (a) (b) (a) (b) 

0.2 1.00338 1.00338 1.00127 1.00127 1.00068 1.00068 
0.4 1.00675 1.00679 1.00253 1.00354 1.00135 1.00135 
0.6 1.01013 1.01021 1.00380 1.00382 1.00203 1.00203 
0.8 1.01351 1.01365 1.00507 1.00510 1.00270 1.00271 
1.0 1.01689 1.01711 1.00633 1.00639 1.00338 1.00340 
1.2 1.02026 1.02058 1.00760 1.00768 1.00405 1.00409 
1.4 1.02364 1.02408 1.00887 1.00898 1.00473 1.00478 
1.6 1.02702 1.02759 1.01032 1.01028 1.00540 1.00547 
1.8 1.03039 1.03112 1.01140 1.01160 1.00608 1.00616 
2.0 1.03377 1.03467 1.01267 1.01290 1.00676 1.00685 

4.0 1.06755 1.07136 1.02533 1.02635 1.01351 1.01394 

r o u t i n e  fo r  t h e  r i g i d - l i d  p r o b l e m  a t  s m a l l  v a l u e s  o f  J m a y  b e  a t t r i b u t a b l e  t o  t h i s ,  a l t h o u g h  

n o  s u c h  p r o b l e m s  w e r e  e n c o u n t e r e d  f o r  t h e  c o r r e s p o n d i n g  f r e e - s u r f a c e  p r o b l e m .  F a i l u r e  is  

n o t  a n e c e s s a r y  c o n s e q u e n c e  i f  dq/dA is  n o t  s i n g l e - v a l u e d ,  b u t  in  g e n e r a l  c o m p u t a t i o n  

t i m e  is  i n c r e a s e d .  

T h e  s e c o n d  c h o i c e  f o r  t h e  b a s i c  f l o w  w a s  

~ ( z )  = z ,  - l ~ < z ~ < 0 ;  

t h i s  f l o w  a t t a i n s  i t s  m a x i m u m  s p e e d  a t  t h e  f r e e - s u r f a c e  l eve l .  A g a i n ,  t h e  v a r i a t i o n  w i t h  G ,  

7. 

C 

3- 

2- 

C~2=0 

0~2: I 

o 
J 

Figure 2. The wave speed c for the lowest mode in the sinusoidal shear flow, for G = 105 and wave number  ~, 
t~ 2 = 0, 1, 10 and 100. 
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Table 3. A comparison of the wavespeed c for the lowest-mode internal wave, of wave number a = 1, for various 
values of G; the basic flow is the linear shear flow ~(z) = z. 

J G 

10 3 10 6 10 7 101° rigid lid 

400 5.5764 5.5781 5.5783 5.5783 5.5783 
300 4.7662 4.7673 4.7674 4.7674 
200 3.8059 3.8064 3.8065 3.8065 
100 2.5569 2.5571 2.5571 2.5571 
20 0.90992 0.90994 0.90994 0.90994 

for values a round  those appl icab le  in oceanic  app l ica t ions  for example ,  appears  to be 
smal l  and  the r igid- l id  mode l  a good  approx ima t ion .  Tab le  3 shows a typical  compar i son  
for  a given mode  and  wave number .  

Figures  3 and  4 show the var ia t ion  with mode  n u m b e r  and wave n u m b e r  respectively,  
over  a large range of  values of  J .  These,  and  s imilar  results,  again show the decay  of  the 
wave speed c to Umax (here Umax = 0 at  z = 0). The  scale of these figures, however,  masks  
the  exponent ia l  charac te r  of  the var ia t ion  of c at J $ ~. Close examina t ion  (F igure  5) for 
smal l  J does  indica te  that  the decay  is exponent ia l  in fo rm and  the c tends  to its l imi t ing 
value  as J tends  to Jc = ~. N o  modes  which decay  a lgebra ica l ly  as J decreases  to some 
value  less than  Jc were found;  this is not  surpr is ing as the co r re spond ing  r igid- l id  p rob l em 
of  Couet te  f low has no such modes  either. 

Overal l ,  then, the numer ica l  results  tie in well with the analy t ic  results  of  the previous  
section. In  par t icu lar ,  the asympto t i c  forms for  c at  small  R icha rdson  n u m b e r  seem to be  
very good  app rox ima t ions  indeed.  Fur the rmore ,  the error  in subs t i tu t ing  a r igid b o u n d a r y  

k= l  

3.0- 

k=2  

2.0- 

1.0 

0 1 0 200  3 0 4 0 0  
J 

Figure 3. Wave speed c for the first three modes in the linear shear flow #(z)= z, for a 2 = 10 and G = 10 5. 

4.0- 
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' 6 ' 6 
0 100 200 3 0 4 0 

Figure 4. Wave  speed c of  the lowest mode  in the linear shear f low with G = 105 and wave number t~, ~2  = 0,  1, 

10 and 100. 
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Figure 5. Wave  speed c of  the lowest  mode  in the linear shear flow, at small Richardson number,  showing the 
I exponential  decay as J --* a ; a = 0, G = 105. 
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for  the  free surface  can  be  seen to be  smal l  a n d  such an  a p p r o x i m a t i o n  hence  jus t i f iab le ,  
especia l ly  in  the  r ange  of  pa r ame te r s  l ikely to be  of  in te res t  in  ocean ic  app l ica t ions .  
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